精品水蜜桃久久久久久久,成人国产精品动漫欧美一区,亚洲爆乳精品无码一区二区,精品人妻系列无码人妻免费视频,6080yyy午夜理论AA片,动漫精品无码一区二区三区,日韩欧美国产传媒第一区二区,国产91高潮操逼视频流白浆,97国内少妇偷人精品视频免费 ,亚洲国产成人精品久久久国产成人一区二区三区综合区精品久久久中文字幕一区,亚洲精品久久久一区黄无码国产a一级无码毛片一区二区三区,久久久无码国产精精品免费国国产欧美日本韩高清视频一区二区三区免费式,国产成人无码精品久久久免费,精品欧美国产一区二区三区不卡 ,国内精品久久久久久久影视麻豆|国产精品无码亚洲|无限国产资源好片2018|精品91自产拍在线观看|精品乱子伦一区二区三区掼蛋

學(xué)術(shù)動(dòng)態(tài)

學(xué)術(shù)動(dòng)態(tài)

學(xué)術(shù)活動(dòng)

講座題目:Hospital Readmission Prediction Using Trajectory-Based Deep Learning Approach

作者: 編輯: 發(fā)布時(shí)間:2018-07-22

講座題目:Hospital Readmission Prediction Using Trajectory-Based Deep Learning Approach


主講人:Bin Zhang(張彬)is an assistant professor at Department of Management Information Systems, Eller College of Management, University of Arizona. He is also affiliated member of Artificial Intelligence Lab, University of Arizona. His research interests are Social Network Analysis, Analytical Methods for Large Social Networks, Statistical Modeling for Social Network Problems, Business Intelligence, Machine Learning and Bayesian Statistics.


時(shí)間:2018年7月26日10:00—11:30


地點(diǎn):bwin必贏唯一官網(wǎng)313會(huì)議室


講座簡(jiǎn)介:


Abstract: Hospital readmission refers tothe situation where a patient is re-hospitalized with the same primary diagnosis within a specific time interval after discharge. Hospital readmission causes $26 billion of preventable expenses to the U.S. health systems annually and often indicates suboptimal patient care. To alleviate those severe financial and health consequences, it is crucial to proactively predict patients’ readmission risk. Such prediction is challenging because the evolution of medical events (illness trajectory) is dynamic and complex. The state-of-the-art studies apply statistical models which assume homogeneity among all patients and use static predictors in a period, failing to consider patients’ heterogeneous illness trajectories. Our approach -TADEL(Trajectory-bAsed DEep Learning) – is motivated to tackle the problems with the existing approaches by capturing various illness trajectories and accounting for patient heterogeneity. We evaluated TADEL on a five-year national Medicare claims dataset including 3.6 million patients per year over all hospitals inthe United States, reaching an F1 score of 0.867 and an AUC of 0.884. Our approach significantly outperforms all the state-of-the-art methods. Our findings suggest that health status factors and insurance coverage are important predictors for readmission. This study contributes to IS literature and analytical methodology by formulating the trajectory-based readmission prediction problem and developing a novel deep-learning-based readmission risk prediction framework. From a health IT perspective, this research delivers implementable methods to assess patients’readmission risk and take early interventions to avoid potential negative consequences.


沁阳市| 平安县| 吉木萨尔县| 南靖县| 兴隆县| 铜陵市| 宁强县| 漳浦县| 西华县| 望谟县| 时尚| 依兰县| 托克托县| 和硕县| 拉萨市| 肇东市| 交口县| 长汀县| 金沙县| 浮梁县| 洪洞县| 深泽县| 永清县| 墨竹工卡县| 偏关县| 万安县| 邹城市| 乌海市| 崇阳县| 凤台县| 梨树县| 蛟河市| 高要市| 定陶县| 芮城县| 台南县| 瑞丽市| 博兴县| 呼玛县| 罗源县| 宁河县|