精品水蜜桃久久久久久久,成人国产精品动漫欧美一区,亚洲爆乳精品无码一区二区,精品人妻系列无码人妻免费视频,6080yyy午夜理论AA片,动漫精品无码一区二区三区,日韩欧美国产传媒第一区二区,国产91高潮操逼视频流白浆,97国内少妇偷人精品视频免费 ,亚洲国产成人精品久久久国产成人一区二区三区综合区精品久久久中文字幕一区,亚洲精品久久久一区黄无码国产a一级无码毛片一区二区三区,久久久无码国产精精品免费国国产欧美日本韩高清视频一区二区三区免费式,国产成人无码精品久久久免费,精品欧美国产一区二区三区不卡 ,国内精品久久久久久久影视麻豆|国产精品无码亚洲|无限国产资源好片2018|精品91自产拍在线观看|精品乱子伦一区二区三区掼蛋

講座通知: EM meets Boosting inbig genomic data analysis 2016-12-24


題目: EM meets Boosting inbig genomic data analysis

主講人:楊燦教授 香港浸會(huì)大學(xué)統(tǒng)計(jì)系

時(shí)間:1227號(hào)(周二),上午10:30-11:20

地點(diǎn):bwin必贏唯一官網(wǎng)313會(huì)議室

歡迎廣大師生參加!



報(bào)告內(nèi)容

Recent internationalprojects, such as the Encyclopedia of DNA Elements (ENCODE) project, theRoadmap project and the Genotype-Tissue Expression (GTEx) project, havegenerated vast amounts of genomic annotation data, e.g., epigenome andtranscriptome. There is great demanding of effective statistical approaches tointegrate genomic annotations with the results from genome-wide associationstudies. In this talk, we introduce a statistical framework, named IMAC, forintegratingmultipleannotationstocharacterizefunctional roles of genetic variants that underlie human complex phenotypes.For a given phenotype, IMAC can adaptively incorporates relevant annotations forprioritization of genetic risk variants, allowing nonlinear effects among theseannotations, such as interaction effects between genomic features.Specifically, we assume that the prior probability of a variant associated withthe phenotype is a function of its annotations F(X), where X is thecollection of the annotation status and F(X)is an ensemble of decision trees, i.e., F(X)= \sum_kf_k(X) and f_k(X) is a shallow decision tree. We havedeveloped an efficient EM-Boosting algorithm for model fitting, where a shallowdecision tree grows in a gradient-Boosting manner (Friedman J. 2001) at eachEM-iteration. Our framework inherits the nice property of gradient boostedtrees: (1) The gradient accent property of the Boosting algorithm naturallyguarantees the convergence of our EM-Boosting algorithm. (2) Based on thefitted ensemble \hat{F}(X), we areable to rank the importance of annotations, measure the interaction amongannotations and visualize the model via partial plots (Friedman J. 2005). UsingIMAC, we performed integrative analysis of genome-wide association studies onhuman complex phenotypes and genome-wide annotation resources, e.g., Roadmapepigenome. The analysis results revealed interesting regulatory patterns ofrisk variants. These findings deepen our understanding of genetic architecturesof complex phenotypes. Thestatistical framework developed here is also broadly applicable to many otherareas for integrative analysis of rich data sets.


個(gè)人簡(jiǎn)介

楊燦教授于2011年畢業(yè)于香港科技大學(xué)電子信息工程系,獲得博士學(xué)位。2011-2012耶魯大學(xué)做博士后研究。2012-2014年在耶魯大學(xué)做associate researchscientist。2014年起,其進(jìn)入香港浸會(huì)大學(xué)數(shù)學(xué)系做助理教授。2012年他獲得了the winner of the 2012Hong Kong Young Scientist稱號(hào)。其研究興趣主要集中在statisticalgenomics, bioinformatics, pattern recognition and machine learning.


信息管理與電子商務(wù)系

2016.12.23


洪江市| 宁都县| 文安县| 中江县| 汝城县| 武汉市| 通州区| 平南县| 东辽县| 平邑县| 克什克腾旗| 潞西市| 高邑县| 教育| 巴彦淖尔市| 乌海市| 贺兰县| 陇南市| 喜德县| 富宁县| 开阳县| 邵武市| 仁怀市| 盐城市| 建始县| 山西省| 昌江| 开封县| 当阳市| 中宁县| 兴城市| 合江县| 临沂市| 灵宝市| 天门市| 城口县| 丰原市| 五寨县| 建阳市| 河南省| 沭阳县|