精品水蜜桃久久久久久久,成人国产精品动漫欧美一区,亚洲爆乳精品无码一区二区,精品人妻系列无码人妻免费视频,6080yyy午夜理论AA片,动漫精品无码一区二区三区,日韩欧美国产传媒第一区二区,国产91高潮操逼视频流白浆,97国内少妇偷人精品视频免费 ,亚洲国产成人精品久久久国产成人一区二区三区综合区精品久久久中文字幕一区,亚洲精品久久久一区黄无码国产a一级无码毛片一区二区三区,久久久无码国产精精品免费国国产欧美日本韩高清视频一区二区三区免费式,国产成人无码精品久久久免费,精品欧美国产一区二区三区不卡 ,国内精品久久久久久久影视麻豆|国产精品无码亚洲|无限国产资源好片2018|精品91自产拍在线观看|精品乱子伦一区二区三区掼蛋

講座通知: EM meets Boosting inbig genomic data analysis 2016-12-24


題目: EM meets Boosting inbig genomic data analysis

主講人:楊燦教授 香港浸會(huì)大學(xué)統(tǒng)計(jì)系

時(shí)間:1227號(hào)(周二),上午10:30-11:20

地點(diǎn):bwin必贏唯一官網(wǎng)313會(huì)議室

歡迎廣大師生參加!



報(bào)告內(nèi)容

Recent internationalprojects, such as the Encyclopedia of DNA Elements (ENCODE) project, theRoadmap project and the Genotype-Tissue Expression (GTEx) project, havegenerated vast amounts of genomic annotation data, e.g., epigenome andtranscriptome. There is great demanding of effective statistical approaches tointegrate genomic annotations with the results from genome-wide associationstudies. In this talk, we introduce a statistical framework, named IMAC, forintegratingmultipleannotationstocharacterizefunctional roles of genetic variants that underlie human complex phenotypes.For a given phenotype, IMAC can adaptively incorporates relevant annotations forprioritization of genetic risk variants, allowing nonlinear effects among theseannotations, such as interaction effects between genomic features.Specifically, we assume that the prior probability of a variant associated withthe phenotype is a function of its annotations F(X), where X is thecollection of the annotation status and F(X)is an ensemble of decision trees, i.e., F(X)= \sum_kf_k(X) and f_k(X) is a shallow decision tree. We havedeveloped an efficient EM-Boosting algorithm for model fitting, where a shallowdecision tree grows in a gradient-Boosting manner (Friedman J. 2001) at eachEM-iteration. Our framework inherits the nice property of gradient boostedtrees: (1) The gradient accent property of the Boosting algorithm naturallyguarantees the convergence of our EM-Boosting algorithm. (2) Based on thefitted ensemble \hat{F}(X), we areable to rank the importance of annotations, measure the interaction amongannotations and visualize the model via partial plots (Friedman J. 2005). UsingIMAC, we performed integrative analysis of genome-wide association studies onhuman complex phenotypes and genome-wide annotation resources, e.g., Roadmapepigenome. The analysis results revealed interesting regulatory patterns ofrisk variants. These findings deepen our understanding of genetic architecturesof complex phenotypes. Thestatistical framework developed here is also broadly applicable to many otherareas for integrative analysis of rich data sets.


個(gè)人簡(jiǎn)介

楊燦教授于2011年畢業(yè)于香港科技大學(xué)電子信息工程系,獲得博士學(xué)位。2011-2012耶魯大學(xué)做博士后研究。2012-2014年在耶魯大學(xué)做associate researchscientist。2014年起,其進(jìn)入香港浸會(huì)大學(xué)數(shù)學(xué)系做助理教授。2012年他獲得了the winner of the 2012Hong Kong Young Scientist稱號(hào)。其研究興趣主要集中在statisticalgenomics, bioinformatics, pattern recognition and machine learning.


信息管理與電子商務(wù)系

2016.12.23


安阳市| 航空| 瑞安市| 清流县| 石城县| 万全县| 雷州市| 大化| 江口县| 刚察县| 五常市| 英山县| 遵义县| 湘潭县| 井研县| 江陵县| 南澳县| 桐柏县| 卢氏县| 舟曲县| 八宿县| 永修县| 丰县| 西林县| 兴城市| 东乡族自治县| 志丹县| 镇原县| 韶关市| 张家口市| 郁南县| 顺昌县| 克拉玛依市| 六枝特区| 盐城市| 德庆县| 惠来县| 莲花县| 林甸县| 临夏县| 通江县|